
Quick Overview of
SQLAlchemy

Or:
How a cranky guy learned to stop worrying and love

the ORM

June 15, 2011 - Boston Python Meetup
Michael Kowalchik
CTO - Smarterer

Monday, June 27, 2011

Who am I?

• Enigneer, programmer, lover of Boston

• CTO and co-founder of Smarterer

• this is my second company, first was: Grazr.
5 sec history: 3+ years, great tech, great
team, no market, painful (but deep) lesson

• aside: as God as my witness, I’ll never, ever... write a big
project in Perl again.

Monday, June 27, 2011

caveats, privisos, etc...

• SQLAlchemy is big - this is a 10K foot view

• I’m not an expert, but I’ve been messing
with it for a while now so YMMV

• Smarterer uses it as our ORM / database
lib

• Speaking of... we launched Monday so
running low on sleep :)

Monday, June 27, 2011

Quick Poll

• I assume everyone knows what an ORM is?

• Have experience with Rails Active Record
or Django ORM?

• Have experience with SA?

Monday, June 27, 2011

DONT NEED NO
NEWFANGLED “ORM”!

Monday, June 27, 2011

Anti ORM?

• Used to using a lot of functions on the
database (udfs, replication, triggers, etc...)

• Most ORM’s fail to deliver their promised
level of abstraction

• Most ORM’s marketing: “You’ll never have
to write SQL! Well... until you have to, so
here’s an afterthought raw SQL interface”

Monday, June 27, 2011

Anti ORM?

• Don’t protect me from the database

• Don’t force me not to use the power and
features of the database (otherwise why
are we using an RDS?)

• Make my life easier, but don’t coddle me

Monday, June 27, 2011

SQLAlchemy what is it?

• A Python database “toolkit” that includes
powerful programmatic SQL expression
generation, database abstraction through
dialects, as well as a powerful ORM

Monday, June 27, 2011

SQLAlchemy
Architecture

ORM

SQL Expression Language

TypesDBAPI

Connection Pooling

Schema Metadata

arrows denote dependency

Monday, June 27, 2011

Philosophy (my take)

• SQLAlchemy is for: someone who likes
relational databases, understands their
power, likes Python and wants to keep the
power of the database

• Not strictly database agnostic - doesn’t
force a lowest common denominator

• For people who like more flexibility

Monday, June 27, 2011

SA Concepts

• engine (connection string, dbapi, dialects)

• connection (pools)

• metadata (sa representation of schema)

• expressions - insert, select, update

• ORM, session and Identity Map

Monday, June 27, 2011

engine

• engine is SQLAlchemy’s representation of
the database and it’s dialect

• uses connection string URLs

from sqlalchemy import create_engine
connection strings are RFC-1738 style urls
DIALECT+DRIVER://USERNAME:PASSWORD@HOST:PORT/DATABASE

engine = create_engine('sqlite:///:memory:')

Monday, June 27, 2011

Dialects

• dialect is the conversion from
SQLAlchemy’s internal database
representation and the specific database
(MySQL, Postgres, Oracle, sqlite, etc...)

• specified in the url

from sqlalchemy import create_engine
connection strings are RFC-1738 style urls
DIALECT+DRIVER://USERNAME:PASSWORD@HOST:PORT/DATABASE
engine1 = create_engine('mysql://sa_test:@localhost/test')
engine2 = create_engine('sqlite:///test_db.sqlite')

engine = create_engine('sqlite:///:memory:')

Monday, June 27, 2011

Connection Pools

• Fairly standard database API pattern

• database connections are expensive
operations

• connection pools “hang on” to created
connections and re-use them

• request a new connection, the pool tries
to recycle an existing connection

Monday, June 27, 2011

metadata

• the internal SQLAlchemy representation of
the schema.

• Includes tables, columns, relationships

the object that stores sqlalchemy's understanding of the schema
metadata = MetaData()

traditional way to define tables
addresses_table = Table('addresses', metadata,
 Column('id', Integer, primary_key=True),
 Column('street', String(255)),
 Column('city', String(255)),
 Column('user_id', Integer, ForeignKey("users.id"), nullable=False)
)

Monday, June 27, 2011

Expression Language

• The expression language isn’t an
afterthought for one-off sql statements

• build programmatic SQL using Python

conn = engine.connect()
select_query = select([users_table, addresses_table],
(users_table.c.id==addresses_table.c.id) & (users_table.c.name=="bob"))

result = conn.execute(select_query)
for row in result:
 print row

result.close()
conn.close()

Monday, June 27, 2011

ORM

• The ORM builds on the Expression
Language

• Allows mapping “plain” Python objects - no
special inheritance, to database

• SA’s orm is based on the Data Mapper
design pattern

Monday, June 27, 2011

ORM: Active Record

• Every object is assumed to correspond directly to a table
and a row

• The object contains methods for CRUD (Create, Read,
Update, Delete)

• Strong mirroring between database schema and object
model definition

Object Table and row

Monday, June 27, 2011

ORM: Data Mapper

• How your objects map to the database are controlled by
mapper objects

• There is no requirement for a 1:1, table & row to object
mapping

• Active Record is kind of like a special case of Data
Mapper

Data Mapper DatabaseObject

Monday, June 27, 2011

Why Data Mapper

• More flexible

• Decouples object and application logic
from the database representation

• Allows objects to represent complex data
ops (joins, arbitrary selects, sql functions)

• Easier to build apps on legacy databases

• Can operate like Active Record

Monday, June 27, 2011

Why not Data Mapper

• Database schema / model definition
synchronization not strictly enforced by the
ORM (could be a good or bad thing)

• More ‘things’ to think about (sessions or
object repositories)

• For simple CRUD apps, might be overkill

Monday, June 27, 2011

session operations

• The center of the SQLAlchemy ORM is the
Session

• Provides transactions, and Unit-Of-Work
pattern

• Talks to the mappers, handles obj <-> db

Monday, June 27, 2011

session example

• Open a session, operate on ORM mapped
Python classes

• Add objects to the session then save them
by committing the session

session = Session()
session.query(NewsPaper).all()
session.query(Article).all()

article = Article(title="The Great Story")
newspaper = NewsPaper(name="The Globe")

newspaper.articles.append(article)

session.add(newspaper)
session.commit()

Monday, June 27, 2011

Unit of Work

• Keeps a list of all objects that have been
modified and coordinates the writing of all
changes to the persistent store

• Uses an identity map, based on primary
keys, that allows it to track objects

• Primary use: helps avoid lots of small and/
or unnecessary database calls

Monday, June 27, 2011

Schema Reflection

• Using the option of autoload=True on a
table, SQLAlchemy will build it’s schema
from the database

• Very useful for building apps on existing
databases

Monday, June 27, 2011

Smarterer is hiring!
We’re looking for deeply passionate

technical people. Python, web dev, cloud,
full stack, oh my!

mikepk@smarterer.com

Plug!

Monday, June 27, 2011

mailto:mikepk@smarterer.com
mailto:mikepk@smarterer.com

