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Who am I?

• Enigneer, programmer, lover of Boston

• CTO and co-founder of Smarterer

• this is my second company, first was: Grazr. 
5 sec history: 3+ years, great tech, great 
team, no market, painful (but deep) lesson

• aside: as God as my witness, I’ll never, ever... write a big 
project in Perl again. 
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caveats, privisos, etc...

• SQLAlchemy is big - this is a 10K foot view

• I’m not an expert, but I’ve been messing 
with it for a while now so YMMV

• Smarterer uses it as our ORM / database 
lib

• Speaking of... we launched Monday so 
running low on sleep :)
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Quick Poll

• I assume everyone knows what an ORM is?

• Have experience with Rails Active Record 
or Django ORM?

• Have experience with SA?
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DONT NEED NO 
NEWFANGLED “ORM”!
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Anti ORM?

• Used to using a lot of functions on the 
database (udfs, replication, triggers, etc...)

• Most ORM’s fail to deliver their promised 
level of abstraction

• Most ORM’s marketing: “You’ll never have 
to write SQL! Well... until you have to, so 
here’s an afterthought raw SQL interface”
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Anti ORM?

• Don’t protect me from the database

• Don’t force me not to use the power and 
features of the database (otherwise why 
are we using an RDS?)

• Make my life easier, but don’t coddle me
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SQLAlchemy what is it?

• A Python database “toolkit” that includes 
powerful programmatic SQL expression 
generation, database abstraction through 
dialects, as well as a powerful ORM
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SQLAlchemy 
Architecture

ORM

SQL Expression Language

TypesDBAPI

Connection Pooling

Schema Metadata

arrows denote dependency
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Philosophy (my take)

• SQLAlchemy is for: someone who likes 
relational databases, understands their 
power, likes Python and wants to keep the 
power of the database

• Not strictly database agnostic - doesn’t 
force a lowest common denominator

• For people who like more flexibility
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SA Concepts

• engine (connection string, dbapi, dialects)

• connection (pools)

• metadata (sa representation of schema)

• expressions - insert, select, update

• ORM, session and Identity Map
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engine

• engine is SQLAlchemy’s representation of 
the database and it’s dialect

• uses connection string URLs

from sqlalchemy import create_engine
# connection strings are RFC-1738 style urls
# DIALECT+DRIVER://USERNAME:PASSWORD@HOST:PORT/DATABASE

engine = create_engine('sqlite:///:memory:')
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Dialects

• dialect is the conversion from 
SQLAlchemy’s internal database 
representation and the specific database 
(MySQL, Postgres, Oracle, sqlite, etc...)

• specified in the url

from sqlalchemy import create_engine
# connection strings are RFC-1738 style urls
# DIALECT+DRIVER://USERNAME:PASSWORD@HOST:PORT/DATABASE
# engine1 = create_engine('mysql://sa_test:@localhost/test')
# engine2 = create_engine('sqlite:///test_db.sqlite')

engine = create_engine('sqlite:///:memory:')
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Connection Pools

• Fairly standard database API pattern

• database connections are expensive 
operations

• connection pools “hang on” to created 
connections and re-use them

• request a new connection, the pool tries 
to recycle an existing connection
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metadata

• the internal SQLAlchemy representation of 
the schema. 

• Includes tables, columns, relationships

# the object that stores sqlalchemy's understanding of the schema
metadata = MetaData()

# traditional way to define tables
addresses_table = Table('addresses', metadata,
    Column('id', Integer, primary_key=True),
    Column('street', String(255)),
    Column('city', String(255)),
    Column('user_id', Integer, ForeignKey("users.id"), nullable=False)
)
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Expression Language

• The expression language isn’t an 
afterthought for one-off sql statements

• build programmatic SQL using Python

conn = engine.connect()
select_query = select([users_table, addresses_table], 
(users_table.c.id==addresses_table.c.id) & (users_table.c.name=="bob"))

result = conn.execute(select_query)
for row in result:
    print row

result.close()
conn.close()
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ORM

• The ORM builds on the Expression 
Language

• Allows mapping “plain” Python objects - no 
special inheritance, to database

• SA’s orm is based on the Data Mapper 
design pattern
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ORM: Active Record

• Every object is assumed to correspond directly to a table 
and a row

• The object contains methods for CRUD (Create, Read, 
Update, Delete)

• Strong mirroring between database schema and object 
model definition

Object Table and row
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ORM: Data Mapper

• How your objects map to the database are controlled by 
mapper objects

• There is no requirement for a 1:1, table & row to object 
mapping

• Active Record is kind of like a special case of Data 
Mapper

Data Mapper DatabaseObject
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Why Data Mapper

• More flexible

• Decouples object and application logic 
from the database representation

• Allows objects to represent complex data 
ops (joins, arbitrary selects, sql functions)

• Easier to build apps on legacy databases

• Can operate like Active Record
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Why not Data Mapper

• Database schema / model definition 
synchronization not strictly enforced by the 
ORM (could be a good or bad thing)

• More ‘things’ to think about (sessions or 
object repositories)

• For simple CRUD apps, might be overkill
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session operations

• The center of the SQLAlchemy ORM is the 
Session

• Provides transactions, and Unit-Of-Work 
pattern

• Talks to the mappers, handles obj <-> db
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session example

• Open a session, operate on ORM mapped 
Python classes

• Add objects to the session then save them 
by committing the session

session = Session()
session.query(NewsPaper).all()
session.query(Article).all()

article = Article(title="The Great Story")
newspaper = NewsPaper(name="The Globe")

newspaper.articles.append(article)

session.add(newspaper)
session.commit()
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Unit of Work

• Keeps a list of all objects that have been 
modified and coordinates the writing of all 
changes to the persistent store

• Uses an identity map, based on primary 
keys, that allows it to track objects

• Primary use: helps avoid lots of small and/
or unnecessary database calls
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Schema Reflection

• Using the option of autoload=True on a 
table, SQLAlchemy will build it’s schema 
from the database

• Very useful for building apps on existing 
databases

Monday, June 27, 2011



Smarterer is hiring! 
We’re looking for deeply passionate 

technical people. Python, web dev, cloud, 
full stack, oh my! 

mikepk@smarterer.com

Plug!
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